English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Targeted whole-cell recordings in the mammalian brain in vivo

MPS-Authors
/persons/resource/persons94233

Margrie,  Troy W.
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92417

Caputi,  Antonio
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons94415

Monyer,  Hannah
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93319

Hasan,  Mazahir T.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;
Department of Biomedical Optics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95138

Schaefer,  Andreas T.
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons128986

Denk,  Winfried
Department of Biomedical Optics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92314

Brecht,  Michael
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Margrie, T. W., Meyer, A. H., Caputi, A., Monyer, H., Hasan, M. T., Schaefer, A. T., et al. (2003). Targeted whole-cell recordings in the mammalian brain in vivo. Neuron, 39(6), 911-918. doi:10.1016/j.neuron.2003.08.012.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-C66E-F
Abstract
While electrophysiological recordings from visually identified cell bodies or dendrites are routinely performed in cell culture and acute brain slice preparations, targeted recordings from the mammalian nervous system are currently not possible in vivo. The "blind" approach that is used instead is somewhat random and largely limited to common neuronal cell types. This approach prohibits recordings from, for example, molecularly defined and/or disrupted populations of neurons. Here we describe a method, which we call TPTP (two-photon targeted patching), that uses two-photon imaging to guide in vivo whole-cell recordings to individual, genetically labeled cortical neurons. We apply this technique to obtain recordings from genetically manipulated, parvalbumin-EGFP-positive interneurons in the somatosensory cortex. We find that both spontaneous and sensory-evoked activity patterns involve the synchronized discharge of electrically coupled interneurons. TPTP applied in vivo will therefore provide new insights into the molecular control of neuronal function at the systems level.