English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ca2+ channel to synaptic vesicle distance accounts for the readily releasable pool kinetics at a functionally mature auditory synapse

MPS-Authors

Chen,  Zuxin
Max Planck Florida Institute for Neuroscience, Max Planck Society;

Das,  Brati
Max Planck Florida Institute for Neuroscience, Max Planck Society;

Young,  Samuel M.
Max Planck Florida Institute for Neuroscience, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Chen, Z., Das, B., Nakamura, Y., DiGregorio, D. A., & Young, S. M. (2015). Ca2+ channel to synaptic vesicle distance accounts for the readily releasable pool kinetics at a functionally mature auditory synapse. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(5), 2083-2100. doi:10.1523/JNEUROSCI.2753-14.2015.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-C797-9
Abstract
Precise regulation of synaptic vesicle (SV) release at the calyx of Held is critical for auditory processing. At the prehearing calyx of Held, synchronous and asynchronous release is mediated by fast and slow releasing SVs within the readily releasable pool (RRP). However, the posthearing calyx has dramatically different release properties. Whether developmental alterations in RRP properties contribute to the accelerated release time course found in posthearing calyces is not known. To study these questions, we performed paired patch-clamp recordings, deconvolution analysis, and numerical simulations of buffered Ca(2+) diffusion and SV release in postnatal day (P) 16-19 mouse calyces, as their release properties resemble mature calyces of Held. We found the P16-P19 calyx RRP consists of two pools: a fast pool (τ ≤ 0.9 ms) and slow pool (τ ∼4 ms), in which release kinetics and relative composition of the two pools were unaffected by 5 mm EGTA. Simulations of SV release from the RRP revealed that two populations of SVs were necessary to reproduce the experimental release rates: (1) SVs located close (∼5-25 nm) and (2) more distal (25-100 nm) to VGCC clusters. This positional coupling was confirmed by experiments showing 20 mm EGTA preferentially blocked distally coupled SVs. Lowering external [Ca(2+)] to in vivo levels reduced only the fraction SVs released from the fast pool. Therefore, we conclude that a dominant parameter regulating the mature calyx RRP release kinetics is the distance between SVs and VGCC clusters.