English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands

MPS-Authors
/persons/resource/persons133115

Weber,  Bettina
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons140392

Wu,  Dianming
Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons191532

Tamm,  Alexandra
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons145459

Ruckteschler,  Nina
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons187708

Rodríguez-Caballero,  Emilio
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons133113

Meusel,  Hannah
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100922

Elbert,  Wolfgang
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons140395

Sörgel,  Matthias
Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons127588

Cheng,  Yafang
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100899

Crutzen,  Paul J.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101295

Su,  Hang
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  Ulrich
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Weber, B., Wu, D., Tamm, A., Ruckteschler, N., Rodríguez-Caballero, E., Steinkamp, J., et al. (2015). Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proceedings of the National Academy of Sciences of the United States of America, 112(50), 15384-15389. doi:10.1073/pnas.1515818112.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-D481-1
Abstract
Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth's nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being similar to 20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of similar to 1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a(-1) of NO-N and 0.6 Tg a(-1) of HONO-N), corresponding to similar to 20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate.