English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Online distributed source localization from EEG/MEG data

MPS-Authors
/persons/resource/persons19779

Knösche,  Thomas R.
Methods and Development Group MEG and EEG - Cortical Networks and Cognitive Functions, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19833

Maess,  Burkhard
Methods and Development Group MEG and EEG - Cortical Networks and Cognitive Functions, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pieloth, C., Knösche, T. R., Maess, B., & Fuchs, M. (2014). Online distributed source localization from EEG/MEG data. International Journal of Computing, 13(1), 17-24.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-07E8-0
Abstract
Electroencephalography (EEG) and Magnetoencephalography (MEG) provide insight into neuronal processes in the brain in a real-time scale. This renders these modalities particularly interesting for online analysis methods, e.g. to visualize brain activity in real-time. Brain activity can be modeled in terms of a source distribution found by solving the bioelectromagnetic inverse problem, e.g. using linear source reconstruction methods. Such methods are particularly suitable to be used on modern highly parallel processing systems, such as widely available graphic processing units (GPUs). We present a system that, according to its modular scheme, can be configured in a very flexible way using graphical building blocks. Different preprocessing algorithms together with a linear source reconstruction method can be used for online analysis. The algorithms use both CPU and GPU resources. We tested our system in a simulation and in a realistic experiment.