Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

An Empirical Evaluation of Deep Learning on Highway Driving

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

arXiv:1504.01716.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, J., et al. (2015). An Empirical Evaluation of Deep Learning on Highway Driving. Retrieved from http://arxiv.org/abs/1504.01716.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-0A9C-F
Zusammenfassung
Numerous groups have applied a variety of deep learning techniques to
computer vision problems in highway perception scenarios. In this paper, we
presented a number of empirical evaluations of recent deep learning advances.
Computer vision, combined with deep learning, has the potential to bring about
a relatively inexpensive, robust solution to autonomous driving. To prepare
deep learning for industry uptake and practical applications, neural networks
will require large data sets that represent all possible driving environments
and scenarios. We collect a large data set of highway data and apply deep
learning and computer vision algorithms to problems such as car and lane
detection. We show how existing convolutional neural networks (CNNs) can be
used to perform lane and vehicle detection while running at frame rates
required for a real-time system. Our results lend credence to the hypothesis
that deep learning holds promise for autonomous driving.