Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Canonical Hamiltonian for an extended test body in curved spacetime: To quadratic order in spin

MPG-Autoren
/persons/resource/persons192129

Vines,  Justin
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons144501

Steinhoff,  Jan
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons192101

Hinderer,  Tanja
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1601.07529.pdf
(Preprint), 668KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vines, J., Kunst, D., Steinhoff, J., & Hinderer, T. (2016). Canonical Hamiltonian for an extended test body in curved spacetime: To quadratic order in spin. Physical Review D, 93: 103008. doi:10.1103/PhysRevD.93.103008.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-0BC4-B
Zusammenfassung
We derive a Hamiltonian for an extended spinning test-body in a curved background spacetime, to quadratic order in the spin, in terms of three-dimensional position, momentum, and spin variables having canonical Poisson brackets. This requires a careful analysis of how changes of the spin supplementary condition are related to shifts of the body's representative worldline and transformations of the body's multipole moments, and we employ bitensor calculus for a precise framing of this analysis. We apply the result to the case of the Kerr spacetime and thereby compute an explicit canonical Hamiltonian for the test-body limit of the spinning two-body problem in general relativity, valid for generic orbits and spin orientations, to quadratic order in the test spin. This fully relativistic Hamiltonian is then expanded in post-Newtonian orders and in powers of the Kerr spin parameter, allowing comparisons with the test-mass limits of available post-Newtonian results. Both the fully relativistic Hamiltonian and the results of its expansion can inform the construction of waveform models, especially effective-one-body models, for the analysis of gravitational waves from compact binaries.