English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern

MPS-Authors
/persons/resource/persons95138

Schaefer,  Andreas T.
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons94010

Larkum,  Matthew E.
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95013

Roth,  Arnd
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schaefer, A. T., Larkum, M. E., Sakmann, B., & Roth, A. (2003). Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. Journal of Neurophysiology, 89(6), 3143-3154. doi:10.1152/jn.00046.2003.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002A-10F4-B
Abstract
Neurons display a variety of complex dendritic morphologies even within the same class. We examined the relationship between dendritic arborization and the coupling between somatic and dendritic action potential (AP) initiation sites in layer 5 (L5) neocortical pyramidal neurons. Coupling was defined as the relative reduction in threshold for initiation of a dendritic calcium AP due to a coincident back-propagating AP. Simulations based on reconstructions of biocytin-filled cells showed that addition of oblique branches of the main apical dendrite in close proximity to the soma (d < 140 microm) increases the coupling between the apical and axosomatic AP initiation zones, whereas incorporation of distal branches decreases coupling. Experimental studies on L5 pyramids in acute brain slices revealed a highly significant (n = 28, r = 0.63, P < 0.0005) correlation: increasing the fraction of proximal oblique dendrites (d < 140 microm), e.g., from 30 to 60% resulted on average in an increase of the coupling from approximately 35% to almost 60%. We conclude that variation in dendritic arborization may be a key determinant of variability in coupling (49 +/- 17%; range 19-83%; n = 37) and is likely to outweigh the contribution made by variations in active membrane properties. Thus coincidence detection of inputs arriving from different cortical layers is strongly regulated by differences in dendritic arborization.