Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes

MPG-Autoren
/persons/resource/persons130321

Pérez‑Priego,  Oscar
Biosphere-Atmosphere Interactions and Experimentation, Dr. M. Migliavacca, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Serrano-Ortiz, P., Sánchez-Cañete, E. P., Olmo, F. J., Metzger, S., Pérez‑Priego, O., Carrara, A., et al. (2016). Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes. Boundary-Layer Meteorology, 158(3), 489-499. doi:10.1007/s10546-015-0099-4.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-151E-7
Zusammenfassung
The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation (Rn) and soil heat fluxes (G) are treated differently, and typically only Rn is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal Rn and G. For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal Rn, when only vertical Rn measurements are available.