English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Expression of the IKr components KCNH2 (rERG) and KCNE2 (rMiRP1) during late rat heart development

MPS-Authors
/persons/resource/persons92498

Chun,  Julian
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93829

Koenen,  Michael
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons96072

Zehelein,  Joerg
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Chun, J., Koenen, M., Katus, H. A., & Zehelein, J. (2004). Expression of the IKr components KCNH2 (rERG) and KCNE2 (rMiRP1) during late rat heart development. Experimental & molecular medicine, 36(4), 367-371. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15365256.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-153D-1
Abstract
To understand molecular mechanisms that regulate formation and maintenance of cardiac IKr (rapidly activating component of the delayed rectifier K+ current), we have investigated the spatiotemporal expression pattern of two rat potassium voltage-gated channels, namely subfamily H (eag-related), member2 (KCNH2) (alias name: rERG) and Isk-related family, member2 (KCNE2) (alias name: rMiRP1) during late embryonic development by means of the in situ hybridization technique. KCNE2 is transcribed predominantly in atrial und ventricular myocardium at stages E14.5-E18.5dpc and only a minor signal emerged in the tongue at E16.5dpc. In contrast, KCNH2 transcripts appeared in a less confined pattern with intense signals in atrial and ventricular myocardium, somites, spinal cord, bowel system, central nervous system and thymus at stages E14.5-E18.5dpc. Non-cardiac expression even exceeds the intensity of the cardiac signal, indicating that KCNH2 contributes to K+ currents in non-cardiac tissue as well. Transcription of the rat b-subunit KCNE2 is present in all regions of the fetal myocardium and co-distributes perfectly with transcription of the pore forming a-subunit KCNH2. It seems likely that KCNH2 and KCNE2 are linked to form cardiac IKr channels, associated to cardiogenesis and cardiomyocyte excitability.