Help Privacy Policy Disclaimer
  Advanced SearchBrowse





Coherence-gated wave-front sensing in strongly scattering samples


Feierabend,  Marcus
Department of Biomedical Optics, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Feierabend, M. (2004). Coherence-gated wave-front sensing in strongly scattering samples. PhD Thesis, Ruprecht-Karls-Universität Heidelberg, Heidelberg.

Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-17B2-7
In this thesis coherence-gated wave-front sensing (CGWS), a new approach for measuring wave-fronts in strongly scattering samples, is presented. This method combines Shack-Hartmann wave-front sensing and phase shifting interferometry (PSI). It employs virtual lenses to mimic the function of a conventional Shack-Hartmann sensor. The use of a modal estimation algorithm allows an approximation of the measured wave-front with a linear combination of Zernike polynomials up to the fifth radial degree. The principle of CGWS is tested by measuring two wave-front aberrations, defocus and astigmatism, for a mirror as a sample and a strongly scattering sample. The results are compared to theoretical models. The main advantage of CGWS is the discrimination against light backscattered from outside the focal region. A further advantage is the increase in the effective detection sensitivity. The capabilities of CGWS are demonstrated with wave-front measurements in scattering samples in the presence of background light that is dominant by about three orders of magnitude. In various microscopy applications, the ability to pre-emptively correct the wave-front, employing CGWS measurement data, may allow improvements of the optical focus and thus enhance the resolution and depth penetration in tissue considerably.