Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Comparison of Exome and Genome Sequencing Technologies for the Complete Capture of Protein-Coding Regions

MPG-Autoren
/persons/resource/persons50565

Spielmann,  M.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;
Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany;

/persons/resource/persons50437

Mundlos,  S.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;
Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Lelieveld.pdf
(Verlagsversion), 494KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lelieveld, S. H., Spielmann, M., Mundlos, S., Veltman, J. A., & Gilissen, C. (2015). Comparison of Exome and Genome Sequencing Technologies for the Complete Capture of Protein-Coding Regions. Human Mutations, 36(8), 815-822. doi:10.1002/humu.22813.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-60E5-F
Zusammenfassung
For next-generation sequencing technologies, sufficient base-pair coverage is the foremost requirement for the reliable detection of genomic variants. We investigated whether whole-genome sequencing (WGS) platforms offer improved coverage of coding regions compared with whole-exome sequencing (WES) platforms, and compared single-base coverage for a large set of exome and genome samples. We find that WES platforms have improved considerably in the last years, but at comparable sequencing depth, WGS outperforms WES in terms of covered coding regions. At higher sequencing depth (95x-160x), WES successfully captures 95% of the coding regions with a minimal coverage of 20x, compared with 98% for WGS at 87-fold coverage. Three different assessments of sequence coverage bias showed consistent biases for WES but not for WGS. We found no clear differences for the technologies concerning their ability to achieve complete coverage of 2,759 clinically relevant genes. We show that WES performs comparable to WGS in terms of covered bases if sequenced at two to three times higher coverage. This does, however, go at the cost of substantially more sequencing biases in WES approaches. Our findings will guide laboratories to make an informed decision on which sequencing platform and coverage to choose.