English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Mini-invasive corneal surgery and imaging with femtosecond lasers

MPS-Authors
/persons/resource/persons118183

Giese,  Günter
Department of Biomedical Optics, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Han, M., Giese, G., Zickler, L., Sun, H., & Bille, J. F. (2004). Mini-invasive corneal surgery and imaging with femtosecond lasers. Optics Express, 12(18), 4275-4281. doi:10.1364/OPEX.12.004275.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-1A03-4
Abstract
Based on the transparency of corneal tissue and on laser plasma mediated non-thermal tissue ablation, near infrared femtosecond lasers are promising tools for minimally invasive intrastromal refractive surgery. Femtosecond lasers also enable novel nonlinear optical imaging methods like second harmonic corneal imaging. The microscopic effects of femtosecond laser intrastromal surgery were successfully visualized by using second harmonic corneal imaging with diffraction limited resolution, strong imaging contrast and large sensing depth, without requiring tissue fixation or sectioning. The performance of femtosecond laser intrastromal surgery proved to be precise, repeatable and predictable. It might be possible to integrate both surgical and probing functions into a single femtosecond laser system.