English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The structure of the rigor complex and its implications for the power stroke

MPS-Authors
/persons/resource/persons93463

Holmes,  Kenneth C.
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95235

Schröder,  Rasmus R.
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Holmes, K. C., Schröder, R. R., Sweeney, H. L., & Houdusse, A. (2004). The structure of the rigor complex and its implications for the power stroke. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359(1452), 1819-1828. doi:10.1098/rstb.2004.1566.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002A-280B-3
Abstract
Decorated actin provides a model system for studying the strong interaction between actin and myosin. Cryo-energy-filter electron microscopy has recently yielded a 14 A resolution map of rabbit skeletal actin decorated with chicken skeletal S1. The crystal structure of the cross-bridge from skeletal chicken myosin could not be fitted into the three-dimensional electron microscope map without some deformation. However, a newly published structure of the nucleotide-free myosin V cross-bridge, which is apparently already in the strong binding form, can be fitted into the three-dimensional reconstruction without distortion. This supports the notion that nucleotide-free myosin V is an excellent model for strongly bound myosin and allows us to describe the actin-myosin interface. In myosin V the switch 2 element is closed although the lever arm is down (post-power stroke). Therefore, it appears likely that switch 2 does not open very much during the power stroke. The myosin V structure also differs from the chicken skeletal myosin structure in the nucleotide-binding site and the degree of bending of the backbone ß-sheet. These suggest a mechanism for the control of the power stroke by strong actin binding.