Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Reproducibility in density functional theory calculations of solids

MPG-Autoren

Draxl,  Claudia
Institut für Physik and Integrative Research Institute for the Sciences (IRIS)–Adlershof, Humboldt-Universität zu Berlin;
Theory, Fritz Haber Institute, Max Planck Society;

Gulans,  Andris
Institut für Physik and Integrative Research Institute for the Sciences (IRIS)–Adlershof, Humboldt-Universität zu Berlin;
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias
Theory, Fritz Haber Institute, Max Planck Society;
Department of Chemistry and Biochemistry and Materials Department, University of California–Santa Barbara;

/persons/resource/persons22175

Tkatchenko,  Alexandre
Theory, Fritz Haber Institute, Max Planck Society;
Physics and Materials Science Research Unit, University of Luxembourg;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lejaeghere, K., Bihlmayer, G., Björkman, T., Blaha, P., Blügel, S., Blum, V., et al. (2016). Reproducibility in density functional theory calculations of solids. Science, 351(6280), 1415-1423. doi:10.1126/science.aad3000.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002A-5118-5
Zusammenfassung
The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.