Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Neuronal co-expression of EGFP and β-galactosidase in mice causes neuropathology and premature death

MPG-Autoren
/persons/resource/persons93897

Krestel,  Heinz Eric
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons94368

Mihaljevic,  André
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons123453

Hoffman,  Dax A.
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Krestel, H. E., Mihaljevic, A., Hoffman, D. A., & Schneider, A. (2004). Neuronal co-expression of EGFP and β-galactosidase in mice causes neuropathology and premature death. Neurobiology of Disease, 17(2), 310-318. doi:10.1016/j.nbd.2004.05.012.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-2C8E-E
Zusammenfassung
Dose-dependent co-expression of enhanced green fluorescent protein (EGFP) and beta-galactosidase (beta-gal) in the cytoplasm of forebrain neurons of two independent mouse lines resulted in growth retardation, weakness, and premature lethality. In primary motor cortex and striatum, apoptosis, glial fibrillary acidic protein proliferation, and cell loss were found. In addition, we observed aggregations of EGFP and beta-gal that colocalized with ubiquitin. GFP is unlikely to be toxic per se, as a third mouse line that expressed twice as much GFP in the cytoplasm of forebrain neurons as the two affected lines was normal. Cytoplasmic aggregations of EGFP and beta-gal occurred in affected and phenotypically normal mice suggesting a storage function rather than being detrimental. We successfully prolonged survival of affected mice with granulocyte colony-stimulating factor (GCSF) and the antibiotic minocycline. These compounds could protect neurons from EGFP and beta-gal-induced dysfunction, as demise of mice started after treatment was discontinued.