English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex.

MPS-Authors
/persons/resource/persons94530

Nevian,  Thomas
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Nevian, T., & Sakmann, B. (2004). Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 24(7), 1689-1699. doi:10.1523/JNEUROSCI.3332-03.2004.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-33D4-C
Abstract
The precise timing of presynaptic and postsynaptic activity results in synaptic modifications, which depend on calcium influx. [Ca2+] transients in the spines of spiny neurons in layer 4 (L4) of the somatosensory barrel cortex of young rats were investigated in thalamocortical brain slices by two-photon excitation microscopy to determine the spike timing dependence of the Ca2+ signal during near-coincident presynaptic and postsynaptic activity. [Ca2+] transients evoked by backpropagating action potentials (bAPs) were mediated by voltage-dependent Ca2+ channels and were of comparable size in a spine and adjacent dendritic shaft. They decreased with the distance of the spine from the soma. EPSP-evoked [Ca2+] transients were restricted to spine heads and were mediated almost entirely by Ca2+ influx through NMDA receptors (NMDARs). Their amplitude was independent of the position of the spine along the dendritic arbor. bAPs interacted with EPSPs to generate sublinear or supralinear Ca2+ signals in a spine when EPSP and bAP occurred within a time window of 50 msec. Synaptic stimulation, coincident with a bAP, evoked a large postsynaptic Ca2+ influx that was restricted to a single spine, even after EPSPs were blocked by the AMPA receptor antagonist NBQX that rendered synapses effectively "electrically silent." We conclude that the spines of L4 cells can act as sharply tuned detectors for patterns of APs occurring in the boutons of the afferents to L4 cells and the spines of L4 cell dendrites. The readout for near-coincident presynaptic and postsynaptic APs is a large transient Ca2+ influx into synaptically active spines mediated by the brief unblocking of NMDARs during the dendritic bAP.