English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Diversity of sharp-wave–ripple LFP signatures reveals differentiated brain-wide dynamical events

MPS-Authors
/persons/resource/persons84847

Ramirez-Villegas,  JF
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons75278

Besserve,  M
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ramirez-Villegas, J., Logothetis, N., & Besserve, M. (2015). Diversity of sharp-wave–ripple LFP signatures reveals differentiated brain-wide dynamical events. Proceedings of the National Academy of Sciences of the United States of America, 112(46), E6379-E6387. doi:10.1073/pnas.1518257112.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-43AD-1
Abstract
Sharp-wave–ripple (SPW-R) complexes are believed to mediate memory reactivation, transfer, and consolidation. However, their underlying neuronal dynamics at multiple scales remains poorly understood. Using concurrent hippocampal local field potential (LFP) recordings and functional MRI (fMRI), we study local changes in neuronal activity during SPW-R episodes and their brain-wide correlates. Analysis of the temporal alignment between SPW and ripple components reveals well-differentiated SPW-R subtypes in the CA1 LFP. SPW-R–triggered fMRI maps show that ripples aligned to the positive peak of their SPWs have enhanced neocortical metabolic up-regulation. In contrast, ripples occurring at the trough of their SPWs relate to weaker neocortical up-regulation and absent subcortical down-regulation, indicating differentiated involvement of neuromodulatory pathways in the ripple phenomenon mediated by long-range interactions. To our knowledge, this study provides the first evidence for the existence of SPW-R subtypes with differentiated CA1 activity and metabolic correlates in related brain areas, possibly serving different memory functions.