English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ultrasmall Nanoplatforms as Calcium-Responsive Contrast Agents for Magnetic Resonance Imaging

MPS-Authors
/persons/resource/persons84499

Vibhute,  S
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192632

Gündüz,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83784

Angelovski,  G
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Moussaron, A., Vibhute, S., Bianchi, A., Gündüz, S., Kolb, S., Sancey, L., et al. (2015). Ultrasmall Nanoplatforms as Calcium-Responsive Contrast Agents for Magnetic Resonance Imaging. Small, 11(37), 4900-4909. doi:10.1002/smll.201500312.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-4420-2
Abstract
The preparation of ultrasmall and rigid platforms (USRPs) that are covalently coupled to macrocycle-based, calcium-responsive/smart contrast agents (SCAs), and the initial in vitro and in vivo validation of the resulting nanosized probes (SCA-USRPs) by means of magnetic resonance imaging (MRI) is reported. The synthetic procedure is robust, allowing preparation of the SCA-USRPs on a multigram scale. The resulting platforms display the desired MRI activity—i.e., longitudinal relaxivity increases almost twice at 7 T magnetic field strength upon saturation with Ca2+. Cell viability is probed with the MTT assay using HEK-293 cells, which show good tolerance for lower contrast agent concentrations over longer periods of time. On intravenous administration of SCA-USRPs in living mice, MRI studies indicate their rapid accumulation in the renal pelvis and parenchyma. Importantly, the MRI signal increases in both kidney compartments when CaCl2 is also administrated. Laser-induced breakdown spectroscopy experiments confirm accumulation of SCA-USRPs in the renal cortex. To the best of our knowledge, these are the first studies which demonstrate calcium-sensitive MRI signal changes in vivo. Continuing contrast agent and MRI protocol optimizations should lead to wider application of these responsive probes and development of superior functional methods for monitoring calcium-dependent physiological and pathological processes in a dynamic manner.