Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Robust adaptive sliding mode control of a redundant cable driven parallel robot

MPG-Autoren
/persons/resource/persons192734

Schenk,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84078

Masone,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schenk, C., Bülthoff, H., & Masone, C. (2015). Robust adaptive sliding mode control of a redundant cable driven parallel robot. In S. Caraman, M. Barbu, & R. Şolea (Eds.), 2015 19th International Conference on System Theory, Control and Computing (ICSTCC) (pp. 427-434). Piscataway, NJ, USA: IEEE.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-4431-D
Zusammenfassung
In this paper we consider the application problem of a redundant cable-driven parallel robot, tracking a reference trajectory in presence of uncertainties and disturbances. A Super Twisting controller is implemented using a recently proposed gains adaptation law [1], thus not requiring the knowledge of the upper bound of the lumped uncertainties. The controller is extended by a feedforward dynamic inversion control that reduces the effort of the sliding mode controller. Compared to a recently developed Adaptive Terminal Sliding Mode Controller for cable-driven parallel robots [2], the proposed controller manages to achieve lower tracking errors and less chattering in the actuation forces even in presence of perturbations. The system is implemented and tested in simulation using a model of a large redundant cable-driven robot and assuming noisy measurements. Simulations show the effectiveness of the proposed method.