English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems

MPS-Authors
/persons/resource/persons84046

Leitão,  J
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84257

Thielscher,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84266

Tünnerhoff,  J
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84112

Noppeney,  U
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Leitão, J., Thielscher, A., Tünnerhoff, J., & Noppeney, U. (2015). Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems. The Journal of Neuroscience, 35(32), 11445-11457. doi:10.1523/JNEUROSCI.0939-15.2015.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002A-44E7-4
Abstract
Adaptive behavior relies on combining bottom-up sensory inputs with top-down control signals to guide responses in line with current goals and task demands. Over the past decade, accumulating evidence has suggested that the dorsal and ventral frontoparietal attentional systems are recruited interactively in this process. This fMRI study used concurrent transcranial magnetic stimulation (TMS) as a causal perturbation approach to investigate the interactions between dorsal and ventral attentional systems and sensory processing areas. In a sustained spatial attention paradigm, human participants detected weak visual targets that were presented in the lower-left visual field on 50 of the trials. Further, we manipulated the presence/absence of task-irrelevant auditory signals. Critically, on each trial we applied 10 Hz bursts of four TMS (or Sham) pulses to the intraparietal sulcus (IPS). IPS-TMS relative to Sham-TMS increased activation in the parietal cortex regardless of sensory stimulation, confirming the neural effectiveness of TMS stimulation. Visual targets increased activations in the anterior insula, a component of the ventral attentional system responsible for salience detection. Conversely, they decreased activations in the ventral visual areas. Importantly, IPS-TMS abolished target-evoked activation increases in the right temporoparietal junction (TPJ) of the ventral attentional system, whereas it eliminated target-evoked activation decreases in the right fusiform. Our results demonstrate that IPS-TMS exerts profound directional causal influences not only on visual areas but also on the TPJ as a critical component of the ventral attentional system. They reveal a complex interplay between dorsal and ventral attentional systems during target detection under sustained spatial attention.