English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Metabolite cycled single voxel 1H spectroscopy at 9.4T

MPS-Authors
/persons/resource/persons192635

Giapitzakis,  IA
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192740

Nassirpour,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons133464

Avdievich,  N
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84402

Henning,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Giapitzakis, I., Nassirpour, S., Avdievich, N., Kreis, R., & Henning, A. (2015). Metabolite cycled single voxel 1H spectroscopy at 9.4T. Poster presented at 23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2015), Toronto, Canada.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-45C9-F
Abstract
Metabolite cycled proton magnetic resonance spectroscopy (MC 1H-MRS) has been proved to enhance the frequency resolution and the signal to noise ratio (SNR) of the spectrum at static magnetic fields ranging from 1.5 to 7 Tesla. The purposes of this study were to: 1) develop a short duration WS scheme for implementation with a STEAM sequence [5] 2) examine the performance of MC H-MRS compared to a WS STEAM sequence and 3) create spectrum with high frequency resolution at 9.4T enabling the detection of several metabolites.