Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Meeting Abstract

A Parallel Transmit Spectral-Spatial Pulse Design Method for Ultra-High Field MRS Combining LSQR and Optimal Control Based Optimization

MPG-Autoren
/persons/resource/persons192743

Shao,  T
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons133464

Avdievich,  NI
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83936

Glaser,  S
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84402

Henning,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shao, T., Zhang, Y., Avdievich, N., Glaser, S., & Henning, A. (2015). A Parallel Transmit Spectral-Spatial Pulse Design Method for Ultra-High Field MRS Combining LSQR and Optimal Control Based Optimization. In 23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2015).


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-45CD-7
Zusammenfassung
This work presents a new spectral-spatial (SPSP) parallel transmit pulse design method for 1H MRS applications in ultra-high field MRI. Based on the recently developed parallel transmission technology, the pulse is first designed by using a subspace preconditioned LSQR method in purpose of locating a global minimum, and is afterwards optimized by using a quasi-Newton based optimal control (OC) method to find a local minimum answer. By combining these two algorithms in this way, SPSP pulses that offer increased robustness against B1+ inhomogeneity and minimized chemical shift displacement artifacts can be achieved and therefore adopted in MRS applications.