English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Optimal Arrangement of Finite Element Loop Arrays for Parallel Imaging in a Spherical Geometry at 9.4 T

MPS-Authors
/persons/resource/persons192811

Pfrommer,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84402

Henning,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Ressource
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pfrommer, A., & Henning, A. (2015). Optimal Arrangement of Finite Element Loop Arrays for Parallel Imaging in a Spherical Geometry at 9.4 T. Poster presented at 23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2015), Toronto, Canada.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002A-461F-9
Abstract
Parallel imaging with a finite number of array elements is limited by the g-factor enhancement for high k-space undersampling. To fully exploit the unfolding potential of circular surface coils surrounding a spherical head phantom, we developed an optimization routine to minimize the maximum value of the g-factor inside the “head” region. As a result we showed optimal arrangements for 8, 16 and 32 channels at 9.4 T with different acceleration rates. Moreover we precisely specified the range of possible gmax values for each setup including optimal and worst case positioning of the loops.