English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Objects exhibit body model like shape distortions

MPS-Authors
/persons/resource/persons192749

Saulton,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83891

Dodds,  TJ
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83877

de la Rosa,  S
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Saulton, A., Dodds, T., Bülthoff, H., & de la Rosa, S. (2015). Objects exhibit body model like shape distortions. Experimental Brain Research, 233(5), 1471-1479. doi:10.1007/s00221-015-4221-0.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002A-4669-1
Abstract
Accurate knowledge about size and shape of the body derived from somatosensation is important to locate one’s own body in space. The internal representation of these body metrics (body model) has been assessed by contrasting the distortions of participants’ body estimates across two types of tasks (localization task vs. template matching task). Here, we examined to which extent this contrast is linked to the human body. We compared participants’ shape estimates of their own hand and non-corporeal objects (rake, post-it pad, CD-box) between a localization task and a template matching task. While most items were perceived accurately in the visual template matching task, they appeared to be distorted in the localization task. All items’ distortions were characterized by larger length underestimation compared to width. This pattern of distortion was maintained across orientation for the rake item only, suggesting that the biases measured on the rake were bound to an item-centric reference frame. This was previously assumed to be the case only for the hand. Although similar results can be found between non-corporeal items and the hand, the hand appears significantly more distorted than other items in the localization task. Therefore, we conclude that the magnitude of the distortions measured in the localization task is specific to the hand. Our results are in line with the idea that the localization task for the hand measures contributions of both an implicit body model that is not utilized in landmark localization with objects and other factors that are common to objects and the hand.