Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Identifying Time-Varying Neuromuscular Response: Experimental Evaluation of a RLS-based Algorithm

MPG-Autoren
/persons/resource/persons192609

Olivari,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84111

Nieuwenhuizen,  FM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Olivari, M., Nieuwenhuizen, F., Bülthoff, H., & Pollini, L. (2015). Identifying Time-Varying Neuromuscular Response: Experimental Evaluation of a RLS-based Algorithm. In AIAA Modeling and Simulation Technologies Conference 2015: held at the SciTech Forum 2015 (pp. 284-298). Red Hook, NY, USA: Curran.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-479F-0
Zusammenfassung
Methods for identifying neuromuscular response commonly assume time-invariant neuromuscular dynamics. However, neuromuscular dynamics are likely to change during realistic control scenarios. In a previous paper we presented a method for identifying time-varying neuromuscular dynamics based on a Recursive Least Squares (RLS) algorithm. To date, this method has only been validated in a Monte Carlo simulation study. This paper presents an experimental validation of the same method. In the experiment, three different disturbance-rejection tasks were performed: a position task with the human instructed to minimize the stick deflection in front of an external force disturbance, a relax task with the instruction to relax the arm, and a time-varying task with the instruction to alternate between position and relax tasks. The position and relax tasks induce different time-invariant neuromuscular dynamics, whereas the time-varying task induces time-varying neuromuscular dynamics. The RLS-based method was used to estimate neuromuscular dynamics in the three tasks. The neuromuscular estimates were reliable both in time-invariant and time-varying tasks. These findings indicate that the RLS-based method can be used to estimate time-varying neuromuscular responses in human-in-the loop experiments.