English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Embodied neurology: An integrative framework for neurological disorders

MPS-Authors
/persons/resource/persons188373

Freund,  Patrick
Balgrist Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
Wellcome Trust Centre for Neuroimaging, University College London, United Kingdom;
Department of Brain Repair & Rehabilitation, University College London, United Kingdom;
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Draganski,  Bogdan
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Laboratoire de Recherche en Neuroimagerie (LREN), Centre hospitalier universitaire vaudois, Lausanne, Switzerland;

/persons/resource/persons147461

Weiskopf,  Nikolaus
Wellcome Trust Centre for Neuroimaging, University College London, United Kingdom;
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Freund_Friston_2016.pdf
(Publisher version), 604KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Freund, P., Friston, K., Thompson, A. J., Stephan, K. E., Ashburner, J., Bach, D. R., et al. (2016). Embodied neurology: An integrative framework for neurological disorders. Brain, 139(6), 1855-1861. doi:10.1093/brain/aww076.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-4A87-1
Abstract
From a systems biology perspective, the brain and spinal cord are interwoven with the body: they are 'embodied'. Freund et al. propose an integrative framework based on biophysical models that aims to characterize neurological disorders and minimize their impact on patients by considering functional interactions between supra-spinal, spinal and peripheral regions simultaneously.