Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spatio-temporal patterns in inclined layer convection.

MPG-Autoren
/persons/resource/persons173472

Bodenschatz,  Eberhard
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173645

Schneider,  Tobias M.
Max Planck Research Group Emerging Complexity in Physical Systems, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Subramanian, P., Brausch, O., Daniels, K. E., Bodenschatz, E., Schneider, T. M., & Pesch, W. (2016). Spatio-temporal patterns in inclined layer convection. Journal of Fluid Mechanics, 794, 719-745. doi:10.1017/jfm.2016.186.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002A-51C4-1
Zusammenfassung
This paper reports on a theoretical analysis of the rich variety of spatio-temporal patterns observed recently in inclined layer convection at medium Prandtl number when varying the inclination angle gamma and the Rayleigh number R. The present numerical investigation of the inclined layer convection system is based on the standard Oberbeck-Boussinesq equations. The patterns are shown to originate from a complicated competition of buoyancy driven and shear-flow driven pattern forming mechanisms. The former are expressed as longitudinal convection rolls with their axes oriented parallel to the incline, the latter as perpendicular transverse rolls. Along with conventional methods to study roll patterns and their stability, we employ direct numerical simulations in large spatial domains, comparable with the experimental ones. As a result, we determine the phase diagram of the characteristic complex 3-D convection patterns above onset of convection in the gamma-R plane, and find that it compares very well with the experiments. In particular we demonstrate that interactions of specific Fourier modes, characterized by a resonant interaction of their wavevectors in the layer plane, are key to understanding the pattern morphologies.