English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High-Reynolds number Taylor-Couette turbulence.

MPS-Authors
/persons/resource/persons192998

Lohse,  Detlef
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Grossmann, S., Lohse, D., & Sun, C. (2016). High-Reynolds number Taylor-Couette turbulence. Annual Review of Fluid Mechanics, 48, 53-80. doi:10.1146/annurev-fluid-122414-034353.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002A-51D4-E
Abstract
Taylor-Couette flow, the flow between two coaxial co- or counter-rotating cylinders, is one of the paradigmatic systems in the physics of fluids. The (dimensionless) control parameters are the Reynolds numbers of the inner and outer cylinders, the ratio of the cylinder radii, and the aspect ratio. One key response of the system is the torque required to retain constant angular velocities, which can be connected to the angular velocity transport through the gap. Whereas the low–Reynolds number regime was well explored in the 1980s and 1990s of the past century, in the fully turbulent regime major research activity developed only in the past decade. In this article, we review this recent progress in our understanding of fully developed Taylor-Couette turbulence from the experimental, numerical, and theoretical points of view. We focus on the parameter dependence of the global torque and on the local flow organization, including velocity profiles and boundary layers. Next, we discuss transitions between different (turbulent) flow states. We also elaborate on the relevance of this system for astrophysical disks (quasi-Keplerian flows). The review ends with a list of challenges for future research on turbulent Taylor-Couette flow.