Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Strain-displacement relations for strain engineering in single-layer 2d materials

MPG-Autoren
/persons/resource/persons189114

Midtvedt,  Daniel
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184435

Croy,  Alexander
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Midtvedt, D., Lewenkopf, C. H., & Croy, A. (2016). Strain-displacement relations for strain engineering in single-layer 2d materials. 2D Materials, 3(1): 011005. doi:10.1088/2053-1583/3/1/011005.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-5DC3-9
Zusammenfassung
We investigate the electromechanical coupling in single-layer 2d materials. For non-Bravais lattices, we find important corrections to the standard macroscopic strain-microscopic atomic-displacement theory. We put forward a general and systematic approach to calculate strain-displacement relations for several classes of 2d materials. We apply our findings to graphene as a study case, by combining a tight binding and a valence force-field model to calculate electronic and mechanical properties of graphene nanoribbons under strain. The results show good agreement with the predictions of the Dirac equation coupled to continuum mechanics. For this long wave-limit effective theory, we find that the strain-displacement relations lead to a renormalization correction to the strain-induced pseudo-magnetic fields. A similar renormalization is found for the strain-induced band-gap of black phosphorous. Implications for nanomechanical properties and electromechanical coupling in 2d materials are discussed.