Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Pointwise differentiability of higher order for sets

MPG-Autoren
/persons/resource/persons4295

Menne,  U.
Geometric Measure Theory, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1603.08587.pdf
(Preprint), 729KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Menne, U. (submitted). Pointwise differentiability of higher order for sets.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002A-5F9A-4
Zusammenfassung
The present paper develops two concepts of pointwise differentiability of higher order for arbitrary subsets of Euclidean space defined by comparing their distance functions to those of smooth submanifolds. Results include that differentials are Borel functions, higher order rectifiability of the set of differentiability points, and a Rademacher result. One concept is characterised by a limit procedure involving inhomogeneously dilated sets. The original motivation to formulate the concepts stems from studying the support of stationary integral varifolds. In particular, strong pointwise differentiability of every positive integer order is shown at almost all points of the intersection of the support with a given plane.