Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Model Construction and Analysis of Respiration in Halobacterium salinarum

MPG-Autoren
/persons/resource/persons77891

del Rosario,  Ricardo
Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78503

Pfeiffer,  Friedhelm
Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons187915

Mendoza,  Eduardo R.
Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78468

Oesterhelt,  Dieter
Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

journal.pone.0151839.PDF
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Talaue, C. O., del Rosario, R., Pfeiffer, F., Mendoza, E. R., & Oesterhelt, D. (2016). Model Construction and Analysis of Respiration in Halobacterium salinarum. PLOS ONE, 11(3): e0151839. doi:10.1371/journal.pone.0151839.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-6C8B-0
Zusammenfassung
The archaeon Halobacterium salinarum can produce energy using three different processes, namely photosynthesis, oxidative phosphorylation and fermentation of arginine, and is thus a model organism in bioenergetics. Compared to its bacteriorhodopsin-driven photosynthesis, less attention has been devoted to modeling its respiratory pathway. We created a system of ordinary differential equations that models its oxidative phosphorylation. The model consists of the electron transport chain, the ATP synthase, the potassium uniport and the sodium-proton antiport. By fitting the model parameters to experimental data, we show that the model can explain data on proton motive force generation, ATP production, and the charge balancing of ions between the sodium-proton antiporter and the potassium uniport. We performed sensitivity analysis of the model parameters to determine how the model will respond to perturbations in parameter values. The model and the parameters we derived provide a resource that can be used for analytical studies of the bioenergetics of H. salinarum.