English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Impaired synaptic scaling in mouse hippocampal neurons expressing NMDA receptors with reduced calcium permeability

MPS-Authors
/persons/resource/persons94704

Pawlak,  Verena
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95249

Schupp,  Bettina
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95374

Single,  Frank Nicolai
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93955

Köhr,  Georg
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pawlak, V., Schupp, B., Single, F. N., Seeburg, P. H., & Köhr, G. (2005). Impaired synaptic scaling in mouse hippocampal neurons expressing NMDA receptors with reduced calcium permeability. The Journal of Physiology - London, 562(3), 771-783. doi:10.1113/jphysiol.2004.076794.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-C4EF-C
Abstract
NMDA receptors (NMDARs) play a crucial role for the acquisition of functional AMPARs during Hebbian synaptic plasticity at cortical and hippocampal synapses over a short timescale of seconds to minutes. In contrast, homeostatic synaptic plasticity can occur over longer timescales of hours to days. The induction mechanisms of this activity-dependent synaptic scaling are poorly understood but are assumed to be independent of NMDAR signalling in the cortex. Here we investigated in the hippocampus a potential role of NMDAR-mediated Ca(2+) influx for synaptic scaling of AMPA currents by genetic means. The Ca(2+) permeability of NMDARs was reduced by selective postnatal expression in principal neurones of mouse forebrain half of the NR1 subunits with an amino acid substitution at the critical channel site (N598R). This genetic manipulation did not reduce the total charge transfer via NMDARs in nucleated patches (somatic) and at synaptic sites. In contrast, the current amplitude and the charge carried through AMPARs were substantially reduced at somatic and synaptic sites in juvenile and adult mutants, indicating persistent downscaling of AMPA responses. Smaller and less frequent AMPA miniature currents in the mutant demonstrated a postsynaptic locus of this down-regulation. Afferent innervation and release probability were unchanged at CA3-to-CA1 synapses of mutants, as judged from input-output and minimal stimulation experiments. Our results indicate that NMDAR-mediated Ca(2+) signalling is important for synaptic scaling of AMPA currents in the hippocampus in vivo.