English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Resonant impurity states in chemically disordered half-Heusler Dirac semimetals

MPS-Authors
/persons/resource/persons126689

Kiss,  J.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons141011

D'Souza,  S. W.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons138552

Wollmann,  L.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126564

Chadov,  S.
Stanislav Chadov, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Chadova, K., Ködderitzsch, D., Minar, J., Ebert, H., Kiss, J., D'Souza, S. W., et al. (2016). Resonant impurity states in chemically disordered half-Heusler Dirac semimetals. Physical Review B, 93(19): 195102, pp. 1-7. doi:10.1103/PhysRevB.93.195102.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-C56D-A
Abstract
We address the electron transport characteristics in bulk half-Heusler alloys with their compositions tuned to the borderline between topologically nontrivial semimetallic and trivial semiconducting phases. Accurate first-principles calculations based on the coherent potential approximation (CPA) reveal that all the studied systems exhibit sets of dispersionless impurity-like resonant levels, with one of them being located at the Dirac point. By means of the Kubo-Bastin formalism we reveal that the residual conductivity of these alloys is strongly suppressed by impurity scattering, whereas the spin Hall conductivity exhibits a rather complex behavior induced by the resonant states. In particular for LaPt0.5Pd0.5Bi we find that the total spin Hall conductivity is strongly suppressed by two large and opposite contributions: the negative Fermi-surface contribution produced by the resonant impurity and the positive Fermi-sea term stemming from the occupied states. At the same time, we identify no conductivity contributions from the conical states.