English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Pressure tuning the Fermi surface topology of the Weyl semimetal NbP

MPS-Authors
/persons/resource/persons195509

dos Reis,  R. D.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126914

Wu,  S. C.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons179670

Sun,  Y.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons195517

Ajeesh,  M. O.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126847

Shekhar,  C.
Chandra Shekhar, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126835

Schmidt,  M.
Marcus Schmidt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126916

Yan,  B.
Binghai Yan, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126782

Nicklas,  M.
Michael Nicklas, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

dos Reis, R. D., Wu, S. C., Sun, Y., Ajeesh, M. O., Shekhar, C., Schmidt, M., et al. (2016). Pressure tuning the Fermi surface topology of the Weyl semimetal NbP. Physical Review B, 93(20): 205102, pp. 1-7. doi:10.1103/PhysRevB.93.205102.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002A-C5A0-1
Abstract
We report on the pressure evolution of the Fermi surface topology of the Weyl semimetal NbP, probed by Shubnikov-de Haas oscillations in the magnetoresistance combined with ab initio calculations of the band structure. Although we observe a drastic effect on the amplitudes of the quantum oscillations, the frequencies only exhibit a weak pressure dependence up to 2.8 GPa. The pressure-induced variations in the oscillation frequencies are consistent with our band-structure calculations. Furthermore, we can relate the changes in the amplitudes to small modifications in the shape of the Fermi surface. Our findings show evidence of the stability of the electronic band structure of NbP and demonstrate the power of combining quantum-oscillation studies and band-structure calculations to investigate pressure effects on the Fermi surface topology in Weyl semimetals.