日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

A comparison of methods for the detection of gravitational waves from unknown neutron stars

MPS-Authors
/persons/resource/persons192131

Walsh,  Sinead
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20662

Papa,  Maria Alessandra
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;
Searching for Continuous Gravitational Waves, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

1606.00660.pdf
(プレプリント), 2MB

PRD.94.124010.pdf
(出版社版), 5MB

付随資料 (公開)
There is no public supplementary material available
引用

Walsh, S., Pitkin, M., Oliver, M., D'Antonio, S., Dergachev, V., Krolak, A., Astone, P., Bejger, M., Di Giovanni, M., Dorosh, O., Frasca, S., Leaci, P., Mastrogiovanni, S., Miller, A., Palomba, C., Papa, M. A., Piccinni, O. J., Riles, K., Sauter, O., & Sintes, A. M. (2016). A comparison of methods for the detection of gravitational waves from unknown neutron stars. Physical Review D, 94:. doi:10.1103/PhysRevD.94.124010.


引用: https://hdl.handle.net/11858/00-001M-0000-002A-E467-4
要旨
Rapidly rotating neutron stars are promising sources of continuous gravitational wave radiation for the LIGO and Virgo interferometers. The majority of neutron stars in our galaxy have not been identified with electromagnetic observations. All-sky searches for isolated neutron stars offer the potential to detect gravitational waves from these unidentified sources. The parameter space of these blind all-sky searches, which also cover a large range of frequencies and frequency derivatives, presents a significant computational challenge. Different methods have been designed to perform these searches within acceptable computational limits. Here we describe the first benchmark in a project to compare the search methods currently available for the detection of unknown isolated neutron stars. We employ a mock data challenge to compare the ability of each search method to recover signals simulated assuming a standard signal model. We find similar performance among the short duration search methods, while the long duration search method achieves up to a factor of two higher sensitivity. We find the absence of second derivative frequency in the search parameter space does not degrade search sensivity for signals with physically plausible second derivative frequencies. We also report on the parameter estimation accuracy of each search method, and the stability of the sensitivity in frequency, frequency derivative and in the presence of detector noise.