Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Incorporating a prognostic representation of marine nitrogen fixers into the global ocean biogeochemical model HAMOCC

MPG-Autoren
/persons/resource/persons196606

Paulsen,  Hanna
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37188

Ilyina,  Tatiana
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37340

Six,  Katharina D.
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37346

Stemmler,  Irene
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Paulsen_et_al-2017-JAMES.pdf
(Verlagsversion), 33MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Paulsen, H., Ilyina, T., Six, K. D., & Stemmler, I. (2017). Incorporating a prognostic representation of marine nitrogen fixers into the global ocean biogeochemical model HAMOCC. Journal of Advances in Modeling Earth Systems, 9, 438-464. doi:10.1002/2016MS000737.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002A-E61F-B
Zusammenfassung
Nitrogen (N2) fixation is a major source of bioavailable nitrogen to the euphotic zone, thereby exerting an important control on ocean biogeochemical cycling. This paper presents the incorporation of prognostic N2 fixers into the Hamburg Ocean Carbon Cycle model (HAMOCC), a component of the Max Planck Institute Earth System Model (MPI-ESM). Growth dynamics of N2 fixers in the model are based on physiological characteristics of the cyanobacterium Trichodesmium. The applied temperature dependency confines diazotrophic growth and N2 fixation to the tropical and subtropical ocean roughly between 40°S and 40°N. Simulated large scale spatial patterns compare well with observations, and the global N2 fixation rate of 135.6 Tg N yr−1 is within the range of current estimates. Also the vertical distribution of N2 fixation matches well the observations, with a major fraction of about 85% occurring in the upper 20 m. The observed seasonal variability at the stations BATS and ALOHA is reasonably reproduced, with highest fixation rates in northern summer/fall. Iron limitation was found to be an important factor in controlling the simulated distribution of N2 fixation, especially in the Pacific Ocean. The new model component considerably improves the representation of present-day N2 fixation in HAMOCC. It provides the basis for further studies on the role of diazotrophs in global biogeochemical cycles, as well as on the response of N2 fixation to changing environmental conditions. This article is protected by copyright. All rights reserved.