日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Heritability and reliability of automatically segmented human hippocampal formation subregions

MPS-Authors
/persons/resource/persons160236

Zannas,  Anthony S.
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons138194

Carrillo-Roa,  Tania
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80505

Sämann,  Philipp G.
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

1-s2.0-S1053811915011520-main.pdf
(全文テキスト(全般)), 973KB

付随資料 (公開)
There is no public supplementary material available
引用

Whelan, C. D., Hibar, D. P., van Velzen, L. S., Zannas, A. S., Carrillo-Roa, T., McMahon, K., Prasad, G., Kelly, S., Faskowitz, J., deZubiracay, G., Iglesias, J. E., van Erp, T. G. M., Frodl, T., Martin, N. G., Wright, M. J., Jahanshad, N., Schmaal, L., Sämann, P. G., & Thompson, P. M. (2016). Heritability and reliability of automatically segmented human hippocampal formation subregions. NEUROIMAGE, 128, 125-137. doi:10.1016/j.neuroimage.2015.12.039.


引用: https://hdl.handle.net/11858/00-001M-0000-002B-A6FF-9
要旨
The human hippocampal formation can be divided into a set of cytoarchitecturally and functionally distinct subregions, involved in different aspects of memory formation. Neuroanatomical disruptions within these subregions are associated with several debilitating brain disorders including Alzheimer's disease, major depression, schizophrenia, and bipolar disorder. Multi-center brain imaging consortia, such as the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium, are interested in studying disease effects on these subregions, and in the genetic factors that affect them. For large-scale studies, automated extraction and subsequent genomic association studies of these hippocampal subregion measures may provide additional insight. Here, we evaluated the test-retest reliability and transplatform reliability (1.5 T versus 3 T) of the subregion segmentation module in the FreeSurfer software package using three independent cohorts of healthy adults, one young (Queensland Twins Imaging Study, N=39), another elderly (Alzheimer's Disease Neuroimaging Initiative, ADNI-2, N=163) and another mixed cohort of healthy and depressed participants (Max Planck Institute, MPIP, N=598). We also investigated agreement between the most recent version of this algorithm (v6.0) and an older version (v5.3), again using the ADNI-2 and MPIP cohorts in addition to a sample from the Netherlands Study for Depression and Anxiety (NESDA) (N=221). Finally, we estimated the heritability (h(2)) of the segmented subregion volumes using the full sample of young, healthy QTIM twins (N=728). Test-retest reliability was high for all twelve subregions in the 3 T ADNI-2 sample (intraclass correlation coefficient (ICC)=0.70-0.97) and moderate-to-high in the 4 TQTIM sample (ICC=0.5-0.89). Transplatform reliability was strong for eleven of the twelve subregions (ICC=0.66-0.96); however, the hippocampal fissure was not consistently reconstructed across 1.5 T and 3 T field strengths (ICC=0.47-0.57). Between-version agreement was moderate for the hippocampal tail, subiculum and presubiculum (ICC=0.78-0.84; Dice Similarity Coefficient (DSC)=0.55-0.70), and poor for all other subregions (ICC=0.34-0.81; DSC=0.28-0.51). All hippocampal subregion volumes were highly heritable (h(2)=0.67-0.91). Our findings indicate that eleven of the twelve human hippocampal subregions segmented using FreeSurfer version 6.0 may serve as reliable and informative quantitative phenotypes for future multi-site imaging genetics initiatives such as those of the ENIGMA consortium. (C) 2016 The Authors. Published by Elsevier Inc.