English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Correlating structure and electronic band-edge properties in organolead halide perovskites nanoparticles.

MPS-Authors
/persons/resource/persons181011

Canton,  S. E.
Research Group of Structural Dynamics of (Bio)Chemical Systems, MPI for Biophysical Chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2310611.pdf
(Publisher version), 3MB

Supplementary Material (public)

2310611_Suppl.pdf
(Supplementary material), 539KB

Citation

Zhu, Q., Zheng, K., Abdellah, M., Generalov, A., Haase, D., Carlson, S., et al. (2016). Correlating structure and electronic band-edge properties in organolead halide perovskites nanoparticles. Physical Chemistry Chemical Physics, 18(22), 14933-14940.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-FFD0-E
Abstract
After having emerged as primary contenders in the race for highly efficient optoelectronics materials, organolead halide perovskites (OHLP) are now being investigated in the nanoscale regime as promising building blocks with unique properties. For example, unlike their bulk counterpart, quantum dots of OHLP are brightly luminescent, owing to large exciton binding energies that cannot be rationalized solely on the basis of quantum confinement. Here, we establish the direct correlation between the structure and the electronic band-edge properties of CH3NH3PbBr3 nanoparticles. Complementary structural and spectroscopic measurements probing long-range and local order reveal that lattice strain influences the nature of the valence band and modifies the subtle stereochemical activity of the Pb2+ lone-pair. More generally, this work demonstrates that the stereochemical activity of the lone-pair at the metal site is a specific physicochemical parameter coupled to composition, size and strain, which can be employed to engineer novel functionalities in OHLP nanomaterials.