English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bar-mode instability suppression in magnetized relativistic stars

MPS-Authors
/persons/resource/persons20670

Rezzolla,  Luciano
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

1309.6549.pdf
(Preprint), 7MB

jpconf13_470_012008.pdf
(Any fulltext), 7MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Franci, L., De Pietri, R., Dionysopoulou, K., & Rezzolla, L. (2013). Bar-mode instability suppression in magnetized relativistic stars. Journal of Physics: Conference Series, 470: 012008. doi:10.1088/1742-6596/470/1/012008.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-0080-0
Abstract
We show that magnetic fields stronger than about $10^{15}$ G are able to suppress the development of the hydrodynamical bar-mode instability in relativistic stars. The suppression is due to a change in the rest-mass density and angular velocity profiles due to the formation and to the linear growth of a toroidal component that rapidly overcomes the original poloidal one, leading to an amplification of the total magnetic energy. The study is carried out performing three-dimensional ideal-magnetohydrodynamics simulations in full general relativity, superimposing to the initial (matter) equilibrium configurations a purely poloidal magnetic field in the range $10^{14}-10^{16}$ G. When the seed field is a few parts in $10^{15}$ G or above, all the evolved models show the formation of a low-density envelope surrounding the star. For much weaker fields, no effect on the matter evolution is observed, while magnetic fields which are just below the suppression threshold are observed to slow down the growth-rate of the instability.