English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

In search of the kiki-bouba effect

MPS-Authors
/persons/resource/persons179593

Lockwood,  Gwilym
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons188997

Drijvers,  Linda
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society;
Center for Language Studies , External Organizations;

/persons/resource/persons69

Hagoort,  Peter
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour;

/persons/resource/persons42

Dingemanse,  Mark
Language and Cognition Department, MPI for Psycholinguistics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lockwood, G., Drijvers, L., Hagoort, P., & Dingemanse, M. (2016). In search of the kiki-bouba effect. Poster presented at the Eighth Annual Meeting of the Society for the Neurobiology of Language (SNL 2016), London, UK.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-0BE2-7
Abstract
The kiki-bouba effect, where people map round shapes onto round sounds (such as [b] and [o]) and spiky shapes onto “spiky” sounds (such as [i] and [k]), is the most famous example of sound symbolism. Many behavioural variations have been reported since Köhler’s (1929) original experiments. These studies examine orthography (Cuskley, Simner, & Kirby, 2015), literacy (Bremner et al., 2013), and developmental disorders (Drijvers, Zaadnoordijk, & Dingemanse, 2015; Occelli, Esposito, Venuti, Arduino, & Zampini, 2013). Some studies have suggested that the cross-modal associations between linguistic sound and physical form in the kiki-bouba effect are quasi-synaesthetic (Maurer, Pathman, & Mondloch, 2006; Ramachandran & Hubbard, 2001). However, there is a surprising lack of neuroimaging data in the literature that explain how these cross-modal associations occur (with the exceptions of Kovic et al. (2010)and Asano et al. (2015)). We presented 24 participants with randomly generated spiky or round figures and 16 synthesised, reduplicated CVCV (vowels: [i] and [o], consonants: [f], [v], [t], [d], [s], [z], [k], and [g]) nonwords based on Cuskley et al. (2015). This resulted in 16 nonwords across four conditions: full match, vowel match, consonant match, and full mismatch. Participants were asked to rate on a scale of 1 to 7 how well the nonword fit the shape it was presented with. EEG was recorded throughout, with epochs timelocked to the auditory onset of the nonword. There were significant behavioural effects of condition (p<0.0001). Bonferroni t-tests show participants rated full match more highly than full mismatch nonwords. However, there was no reflection of this behavioural effect in the ERP waveforms. One possible reason for the absence of an ERP effect is that this effect may jitter over a broad latency range. Currently oscillatory effects are being analysed, since these are less dependent on precise time-locking to the triggering events.