English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl)hexane (CB6OCB) and comparison with CB7CB

MPS-Authors
/persons/resource/persons128263

Zimmermann,  Herbert
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

SoftMatter_epub_2016_537c_Suppl.pdf
(Supplementary material), 736KB

Citation

Paterson, D. A., Gao, M., Kim, Y.-K., Jamali, A., Finley, K. L., Robles-Hernández, B., et al. (2016). Understanding the twist-bend nematic phase: the characterisation of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl)hexane (CB6OCB) and comparison with CB7CB. Soft Matter, 12(32), 6827-6840. doi:10.1039/C6SM00537C.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-0DD1-E
Abstract
The synthesis and characterisation of the nonsymmetric liquid crystal dimer, 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl)hexane (CB6OCB) is reported. An enantiotropic nematic (N)–twist-bend nematic (NTB) phase transition is observed at 109 °C and a nematic–isotropic phase transition at 153 °C. The NTB phase assignment has been confirmed using polarised light microscopy, freeze fracture transmission electron microscopy (FFTEM), 2H-NMR spectroscopy, and X-ray diffraction. The effective molecular length in both the NTB and N phases indicates a locally intercalated arrangement of the molecules, and the helicoidal pitch length in the NTB phase is estimated to be 8.9 nm. The surface anchoring properties of CB6OCB on a number of aligning layers is reported. A Landau model is applied to describe high-resolution heat capacity measurements in the vicinity of the NTB–N phase transition. Both the theory and heat capacity measurements agree with a very weak first-order phase transition. A complementary extended molecular field theory was found to be in suggestive accord with the 2H-NMR studies of CB6OCB-d2, and those already known for CB7CB-d4. These include the reduced transition temperature, TNTBN/TNI, the order parameter of the mesogenic arms in the N phase close to the NTB–N transition, and the order parameter with respect to the helix axis which is related to the conical angle for the NTB phase.