Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Itinerant and Localized Magnetization Dynamics in Antiferromagnetic Ho

MPG-Autoren
/persons/resource/persons104701

Rettig,  Laurenz
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Swiss Light Source, Paul Scherrer Institut;

Staub,  U.
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevLett.116.257202.pdf
(Verlagsversion), 437KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rettig, L., Dornes, C., Thielemann-Kühn, N., Pontius, N., Zabel, H., Schlagel, D., et al. (2016). Itinerant and Localized Magnetization Dynamics in Antiferromagnetic Ho. Physical Review Letters, 116(25): 257202. doi:10.1103/PhysRevLett.116.257202.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-0F97-6
Zusammenfassung
Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Tuning the x-ray energy to the electric dipole (E1, 2p→5d) or quadrupole (E2, 2p→4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3−τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f−5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.