English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Rapid and specific gray matter changes in M1 induced by balance training

MPS-Authors
/persons/resource/persons20042

Taubert,  Marco
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19850

Mehnert,  Jan
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig, Germany;

/persons/resource/persons19926

Pleger,  Burkhard
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig, Germany;

/persons/resource/persons20065

Villringer,  Arno
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig, Germany;
Berlin School of Mind and Brain, Humboldt University Berlin, Germany;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Taubert, M., Mehnert, J., Pleger, B., & Villringer, A. (2016). Rapid and specific gray matter changes in M1 induced by balance training. NeuroImage, 133, 399-407. doi:10.1016/j.neuroimage.2016.03.017.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-11D1-F
Abstract
Training-induced changes in cortical structure can be observed non-invasively with magnetic resonance imaging (MRI). While macroscopic changes were found mainly after weeks to several months of training in humans, imaging of motor cortical networks in animals revealed rapid microstructural alterations after a few hours of training. We used MRI to test the hypothesis of immediate and specific training-induced alterations in motor cortical gray matter in humans. We found localized increases in motor cortical thickness after 1 h of practice in a complex balancing task. These changes were specific to motor cortical effector representations primarily responsible for balance control in our task (lower limb and trunk) and these effects could be confirmed in a replication study. Cortical thickness changes (i) linearly increased across the training session, (ii) occurred independent of alterations in resting cerebral blood flow and (iii) were not triggered by repetitive use of the lower limbs. Our findings show that motor learning triggers rapid and specific gray matter changes in M1.