Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Impact of a high-speed train of microdrops on a liquid pool.


Lohse,  Detlef
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Bouwhuis, W., Huang, X., Chan, C. U., Frommhold, P. E., Ohl, C. D., Lohse, D., et al. (2016). Impact of a high-speed train of microdrops on a liquid pool. Journal of Fluid Mechanics, 792, 850-868. doi:10.1017/jfm.2016.105.

Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-1510-E
A train of high-speed microdrops impacting on a liquid pool can create a very deep and narrow cavity, reaching depths more than 1000 times the size of the individual drops. The impact of such a droplet train is studied numerically using boundary integral simulations. In these simulations, we solve the potential flow in the pool and in the impacting drops, taking into account the influence of liquid inertia, gravity and surface tension. We show that for microdrops the cavity shape and maximum depth primarily depend on the balance of inertia and surface tension and discuss how these are influenced by the spacing between the drops in the train. Finally, we derive simple scaling laws for the cavity depth and width.