Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Water-mediated interactions between hydrophilic and hydrophobic surfaces

MPG-Autoren
/persons/resource/persons136477

Schneck,  Emanuel
Emanuel Schneck, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2327587.pdf
(Verlagsversion), 6MB

Ergänzendes Material (frei zugänglich)

2327587_supp.pdf
(Ergänzendes Material), 245KB

Zitation

Kanduč, M., Schlaich, A., Schneck, E., & Netz, R. R. (2016). Water-mediated interactions between hydrophilic and hydrophobic surfaces. Langmuir, 32(35), 8767-8782. doi:10.1021/acs.langmuir.6b01727.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-2136-E
Zusammenfassung
All surfaces in water experience at short separations hydration repulsion or hydrophobic attraction, depending on the surface polarity. These interactions dominate over the more long-ranged electrostatic and van der Waals interactions and are ubiquitous in biological and colloidal systems. Despite their importance for all scenarios where the surface separation is in the nanometer range, the origin of these hydration interactions is still unclear. Using atomistic solvent-explicit molecular dynamics simulations, we analyze the interaction free energies of charge-neutral model surfaces with different elastic and water-binding properties. The surface polarity is shown to be the most important parameter that not only determines the hydration properties and thereby the water contact angle of a single surface, but also the surface–surface interaction and whether two surfaces attract or repel. Elastic properties of the surfaces are less important. Based on surface contact angles and surface–surface binding affinities, we construct a universal interaction diagram featuring three different interaction regimes: hydration repulsion, dry adhesion, and cavitation-induced attraction, and for intermediate surface polarities, dry adhesion. Based on scaling arguments and perturbation theory, we establish simple combination rules that predict the interaction behavior for combinations of dissimilar surfaces.