English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Impaired neural processing of dynamic faces in left-onset Parkinson's disease

MPS-Authors
/persons/resource/persons19651

Garrido-Vásquez,  Patricia
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Experimental Psychology and Cognitive Science, Justus Liebig University, Giessen, Germany;

/persons/resource/persons19994

Sehm,  Bernhard
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19791

Kotz,  Sonja A.
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Neuropsychology and Psychopharmacology, Maastricht University, the Netherlands;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Garrido-Vásquez, P., Pell, M. D., Paulmann, S., Sehm, B., & Kotz, S. A. (2016). Impaired neural processing of dynamic faces in left-onset Parkinson's disease. Neuropsychologia, 82, 123-133. doi:10.1016/j.neuropsychologia.2016.01.017.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002B-207E-5
Abstract
Parkinson's disease (PD) affects patients beyond the motor domain. According to previous evidence, one mechanism that may be impaired in the disease is face processing. However, few studies have investigated this process at the neural level in PD. Moreover, research using dynamic facial displays rather than static pictures is scarce, but highly warranted due to the higher ecological validity of dynamic stimuli. In the present study we aimed to investigate how PD patients process emotional and non-emotional dynamic face stimuli at the neural level using event-related potentials. Since the literature has revealed a predominantly right-lateralized network for dynamic face processing, we divided the group into patients with left (LPD) and right (RPD) motor symptom onset (right versus left cerebral hemisphere predominantly affected, respectively). Participants watched short video clips of happy, angry, and neutral expressions and engaged in a shallow gender decision task in order to avoid confounds of task difficulty in the data. In line with our expectations, the LPD group showed significant face processing deficits compared to controls. While there were no group differences in early, sensory-driven processing (fronto-central N1 and posterior P1), the vertex positive potential, which is considered the fronto-central counterpart of the face-specific posterior N170 component, had a reduced amplitude and delayed latency in the LPD group. This may indicate disturbances of structural face processing in LPD. Furthermore, the effect was independent of the emotional content of the videos. In contrast, static facial identity recognition performance in LPD was not significantly different from controls, and comprehensive testing of cognitive functions did not reveal any deficits in this group. We therefore conclude that PD, and more specifically the predominant right-hemispheric affection in left-onset PD, is associated with impaired processing of dynamic facial expressions, which could be one of the mechanisms behind the often reported problems of PD patients in their social lives.