Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quantum chaos in optical systems: The annular billiard

MPG-Autoren
/persons/resource/persons184576

Hentschel,  M.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184888

Richter,  K.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hentschel, M., & Richter, K. (2002). Quantum chaos in optical systems: The annular billiard. Physical Review E, 66(5): 056207. Retrieved from http://ojps.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLEEE8000066000005056207000001&idtype=cvips&gifs=yes.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-36AF-D
Zusammenfassung
We study the dielectric annular billiard as a quantum chaotic model of a micro-optical resonator. It differs from conventional billiards with hard-wall boundary conditions in that it is partially open and composed of two dielectric media with different refractive indices. The interplay of reflection and transmission at the different interfaces gives rise to rich dynamics of classical light rays and to a variety of wave phenomena. We study the ray propagation in terms of Poincare surfaces of section and complement it with full numerical solutions of the corresponding wave equations. We introduce and develop an S-matrix approach to open optical cavities which proves very suitable for the identification of resonances of intermediate width that will be most important in future applications like optical communication devices. We show that the Husimi representation is a useful tool in characterizing resonances and establish the ray-wave correspondence in real and phase space. While the simple ray picture provides a good qualitative description of certain system classes, only the wave description reveals the quantitative details.