Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Microwave ionization of alkali-metal Rydberg states in a realistic numerical experiment

MPG-Autoren
/persons/resource/persons60647

Krug,  A.
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184381

Buchleitner,  A.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Krug, A., & Buchleitner, A. (2002). Microwave ionization of alkali-metal Rydberg states in a realistic numerical experiment. Physical Review A, 66(5): 053416. Retrieved from http://ojps.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000066000005053416000001&idtype=cvips&gifs=yes.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-36B1-5
Zusammenfassung
We describe an original approach for the accurate description of alkali-metal Rydberg states exposed to intense electromagnetic fields. Our method combines Floquet and R- matrix theory, complex dilation of the Hamiltonian, a Sturmian basis set to describe the atomic degrees of freedom (including the continuum), and, last but not least, an efficient parallel implementation of the Lanczos algorithm on some of the most powerful supercomputers currently available. Without adjustable parameters, this ab initio approach opens a route to the comprehensive understanding of an abundance of laboratory data on the microwave ionization of one-electron Rydberg states. The versatility of our theoretical/numerical machinery is illustrated in the specific case of microwave driven lithium, faithfully mimicking every single step of the laboratory experiment.