Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Self-avoiding walks on Sierpinski lattices in two and three dimensions

MPG-Autoren
/persons/resource/persons184864

Porto,  M.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184895

Roman,  H. E.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ordemann, A., Porto, M., & Roman, H. E. (2002). Self-avoiding walks on Sierpinski lattices in two and three dimensions. Physical Review E, 65(2): 021107. Retrieved from http://ojps.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLEEE8000065000002021107000001&idtype=cvips&gifs=yes.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002B-382C-5
Zusammenfassung
The scaling properties of linear polymers on deterministic fractal structures, modeled by self-avoiding random walks (SAW) on Sierpinski lattices in two and three dimensions, are studied. To this end. all possible SAW configurations of N steps are enumerated exactly and averages over suitable sets of starting lattice points for the walks are performed to extract the mean quantities of interest reliably. We determine the critical exponent describing the mean end-to-end chemical distance (sic)(N) after N steps and the corresponding distribution function. P-S((sic)/N) A des Cloizeaux-type relation between the exponent characterizing the asymptotic shape of the distribution, for (sic)-->0 and N-->infinity, and the one describing the total number of SAW of N steps is suggested and supported by numerical results. These results are confronted with those obtained recently on the backbone of the incipient percolation cluster, where the corresponding exponents are very well described by a generalized des Cloizeaux relation valid for statistically self-similar structures.