English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Preferential binding of a stable G3BP ribonucleoprotein complex to intron-retaining transcripts in mouse brain and modulation of their expression in the cerebellum.

MPS-Authors
/persons/resource/persons15676

Raabe,  M.
Research Group of Bioanalytical Mass Spectrometry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15947

Urlaub,  H.
Research Group of Bioanalytical Mass Spectrometry, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

2339488_Suppl.pdf
(Supplementary material), 2MB

Citation

Martin, S., Bellora, N., González-Vallinas, J., Irimia, M., Chebli, K., DeToledo, M., et al. (2016). Preferential binding of a stable G3BP ribonucleoprotein complex to intron-retaining transcripts in mouse brain and modulation of their expression in the cerebellum. Journal of Neurochemistry, 139(3), 349-368. doi:10.1111/jnc.13768.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-4109-A
Abstract
Neuronal granules play an important role in the localization and transport of translationally silenced messenger ribonucleoproteins (mRNPs) in neurons. Among the factors associated with these granules, the RNA-binding protein G3BP1 (stress-granules assembly factor) is involved in neuronal plasticity and is induced in Alzheimer's disease. We immunopurified a stable complex containing G3BP1 from mouse brain and performed High-Throughput Sequencing and CrossLinking Immunoprecipitation (HITS-CLIP) to identify the associated RNAs. The G3BP-complex contained the deubiquitinating protease USP10, CtBP1 and the RNA binding proteins Caprin-1, G3BP2a and SFPQ (Splicing Factor Proline and Glutamine rich, or PSF). The G3BP-complex binds preferentially to transcripts that retain introns, and to non-coding sequences like 3'UTR and long non-coding RNAs. Specific transcripts with retained introns appear to be enriched in the cerebellum compared to the rest of the brain and G3BP1 depletion decreased this intron retention in the cerebellum of G3BP1 knockout mice. Among the enriched transcripts, we found an overrepresentation of genes involved in synaptic transmission, especially glutamate-related neuronal transmission. Notably, G3BP1 seems to repress the expression of the mature Grm5 (metabotropic glutamate receptor 5) transcript, by promoting the retention of an intron in the immature transcript in the cerebellum. Our results suggest that G3BP is involved in a new functional mechanism to regulate non-coding RNAs including intron-retaining transcripts, and thus have broad implications for neuronal gene regulation, where intron retention is widespread. This article is protected by copyright. All rights reserved.